key distinctions of science. Real science requires hard work, care, creativity, and even a bit of luck. Scientific theories do not just arise out of data—men and women of genius and creativity craft theories. A great theory is not unlike a master painting, and many see a similar kind of beauty in both. (For more on this aspect of science, see the box below entitled *Thomas S. Kuhn and Scientific Revolutions*.)

CONCEPTUAL

1.1

Laws and Theories Which statement best explains the difference between a law and a theory?

- (a) A law is truth; a theory is mere speculation.
- **(b)** A law summarizes a series of related observations; a theory gives the underlying reasons for them.
- (c) A theory describes what nature does; a law describes why nature does it.

The Nature of Science

Thomas S. Kuhn and Scientific Revolutions

hen scientists talk about science, they often talk in ways that imply that theories are "true." Further, they talk as if they arrive at theories in logical and unbiased ways. For example, a theory central to chemistry that we have discussed in this chapter is John Dalton's atomic theory—the idea that all matter is composed of atoms. Is this theory "true"? Was it reached in logical, unbiased ways? Will this theory still be around in 200 years?

The answers to these questions depend on how we view science and its development. One way to view science—let's call it the *traditional view*—is as the continual accumulation of knowledge and the building of increasingly precise theories. In this view, a scientific theory is a model of the world that reflects what is *actually in* nature. New observations and experiments result in gradual adjustments to theories. Over time, theories get better, giving us a more accurate picture of the physical world.

In the twentieth century, a different view of scientific knowledge began to develop. A book by Thomas Kuhn (1922–1996), published in 1962 and entitled *The Structure* of *Scientific Revolutions*, challenged the traditional view. Kuhn's ideas came from his study of the history of science, which, he argued, does not support the idea that science progresses in a smooth cumulative way. According to Kuhn, science goes through fairly quiet periods that he called *normal science*. In these periods, scientists make their data fit the reigning theory, or paradigm. Small inconsistencies are swept aside during periods of normal science. However, when too many inconsistencies and anomalies develop, a crisis

emerges. The crisis brings about a revolution and a new reigning theory. According to Kuhn, the new theory is usually quite different from the old one; it not only helps us to make sense of new or anomalous information, but it also enables us to see accumulated data from the past in a dramatically new way.

Kuhn further contended that theories are held for reasons that are not always logical or unbiased, and that theories are not *true* models—in the sense of a one-to-one mapping—of the physical world. Because new theories are often so different from the ones they replace, he argued, and because old theories always make good sense to those holding them, they must not be "True" with a capital *T*; otherwise "truth" would be constantly changing.

Kuhn's ideas created a controversy among scientists and science historians that continues to this day. Some, especially postmodern philosophers of science, have taken Kuhn's ideas one step further. They argue that scientific knowledge is completely biased and lacks any objectivity. Most scientists, including Kuhn, would disagree. Although Kuhn pointed out that scientific knowledge has arbitrary elements, he also said, "Observation . . . can and must drastically restrict the range of admissible scientific belief, else there would be no science." In other words, saying that science contains arbitrary elements is quite different from saying that science itself is arbitrary.

OUESTION

In his book, Kuhn stated, "A new theory . . . is seldom or never just an increment to what is already known." From your knowledge of the history of science, can you think of any examples that support Kuhn's statement? Do you know of any instances in which a new theory or model was drastically different from the one it replaced?

1.3 The Classification of Matter

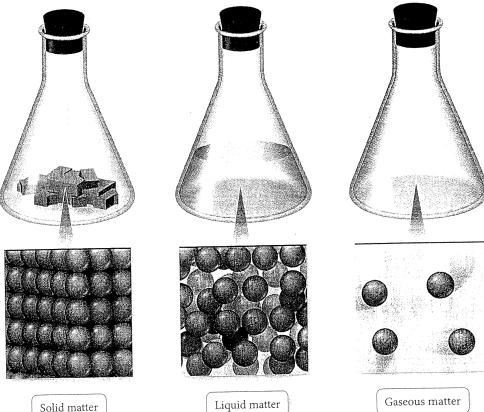
Matter is anything that occupies space and has mass. Your desk, your chair, and even your body are all composed of matter. Less obviously, the air around you is also matter—it too occupies space and has mass. We call a specific instance of matter—such as air, water, or sand—a **substance**. We classify matter according to its **state** (its physical form) and its **composition** (the basic components that make it up).

Classifying Matter

The state of matter changes from solid to liquid to gas with increasing temperature.

Glass and other amorphous solids can be thought of, from one point of view, as intermediate between solids and liquids. Their atoms are fixed in position at room temperature, but they have no long-range structure and do not have distinct melting points.

Crystalline Solid: Regular three-dimensional pattern

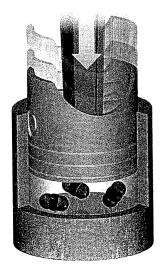

Diamond C (s, diamond)

△ 기업URE 1.2 Crystalline

Solid Diamond (first discussed in Section 1.1) is a crystalline solid composed of carbon atoms arranged in a regular, repeating pattern.

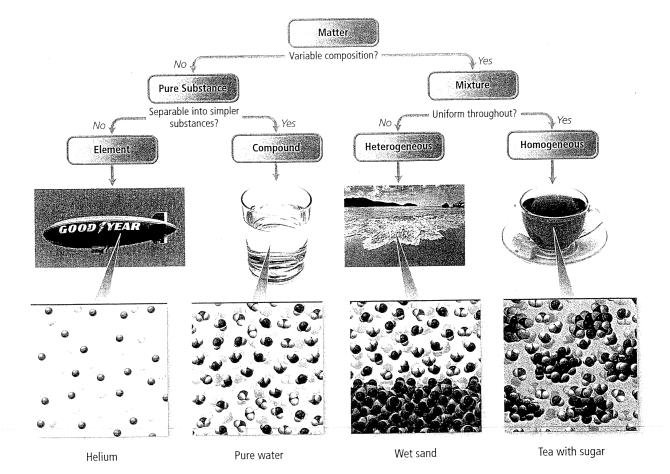
The States of Matter: Solid, Liquid, and Gas

Matter exists in three different states: **solid**, **liquid**, and **gas**. In *solid matter*, atoms or molecules pack closely to each other in fixed locations. Although the atoms and molecules in a solid vibrate, they do not move around or past each other. Consequently, a solid has a fixed volume and rigid shape. Ice, aluminum, and diamond are examples of solids. Solid matter may be **crystalline**, in which case its atoms or molecules are in patterns with long-range, repeating order (Figure 1.2 ≪), or it may be **amorphous**, in which case its atoms or molecules do not have any long-range order. Table salt and diamond are examples of *crystalline* solids; the well-ordered geometric shapes of salt and diamond crystals reflect the well-ordered geometric arrangement of their atoms (although this is not the case for *all* crystalline solids). Examples of *amorphous* solids include glass and plastic. In *liquid matter*, atoms or molecules pack about as closely as they do in solid matter, but they are free to move relative to each other, giving liquids a fixed volume but not a fixed shape. Liquids assume the shape of their containers. Water, alcohol, and gasoline are all substances that are liquids at room temperature.



▲ In a solid, the atoms or molecules are fixed in place and can only vibrate. In a liquid, although the atoms or molecules are closely packed, they can move past one another, allowing the liquid to flow and assume the shape of its container. In a gas, the atoms or molecules are widely spaced, making gases compressible as well as fluid (able to flow).

In gaseous matter, atoms or molecules have a lot of space between them and are free to move relative to one another, making gases compressible (Figure 1.3). When you squeeze a balloon or sit down on an air mattress, you force the atoms and molecules into a smaller space so that they are closer together. Gases always assume the shape and volume of their containers. Substances that are gases at room temperature include helium, nitrogen (the main component of air), and carbon dioxide.


Gas-compressible

of Gases Gases can be compressed—squeezed into a smaller

compressed—squeezed into a smalle volume—because there is so much empty space between atoms or molecules in the gaseous state.

Classifying Matter according to Its Composition: Elements, Compounds, and Mixtures

In addition to classifying matter according to its state, we classify it according to its composition, as shown in the following chart:

The first division in the classification of matter is between a *pure substance* and a *mixture*. A **pure substance** is made up of only one component, and its composition is invariant (it does not vary from one sample to another). The *components* of a pure substance can be individual atoms or groups of atoms joined together. For example, helium, water, and table salt (sodium chloride) are all pure substances. Each of these substances is made up of only one component: helium is made up of helium atoms, water is made up of water molecules, and sodium chloride is made up of sodium chloride units. The composition of a pure sample of any one of these substances is always exactly the same (because you can't vary the composition of a substance made up of only one component).

A **mixture**, by contrast, is composed of two or more components in proportions that can vary from one sample to another. For example, sweetened tea, composed primarily of water molecules and sugar molecules (with a few other substances mixed in), is a mixture. We can make tea slightly sweet (a small proportion of sugar to water) or very sweet (a large proportion of sugar to water) or any level of sweetness in between.

We categorize pure substances themselves into two types—elements and compounds—depending on whether or not they can be broken down (or decomposed) into simpler substances. Helium, which we just noted is a pure substance, is also a good example of an element, a substance that cannot be chemically broken down into simpler substances. Water, also a pure substance, is a good example of a compound, a substance composed of two or more elements (in this case hydrogen and oxygen) in a fixed, definite proportion. On Earth, compounds are more common than pure elements because most elements combine with other elements to form compounds.

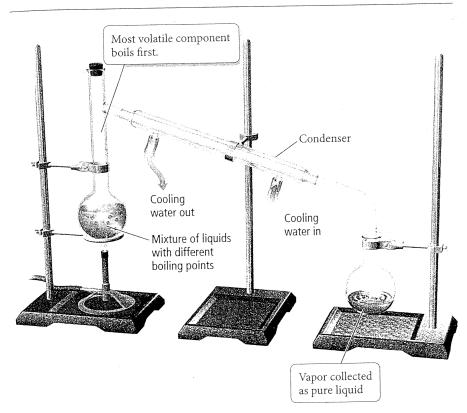
We also categorize mixtures into two types—heterogeneous and homogeneous—depending on how *uniformly* the substances within them mix. Wet sand is a **heterogeneous mixture**, one in which the composition varies from one region of the mixture to another. Sweetened tea is a **homogeneous mixture**, one with the same composition throughout. Homogeneous mixtures have uniform compositions because the atoms or molecules that compose them mix uniformly. Heterogeneous mixtures are made up of distinct regions because the atoms or molecules that compose them separate. Here again we see that the properties of matter are determined by the atoms or molecules that compose it.

Classifying a substance according to its composition is not always obvious and requires that we either know the true composition of the substance or are able to test it in a laboratory. For now, we focus on relatively common substances that you are likely to have encountered. Throughout this course, you will gain the knowledge to understand the composition of a larger variety of substances.

CONCEPTUAL

All known elements are listed in the periodic table in the inside front cover

of this book.


CONNECTION 1.2

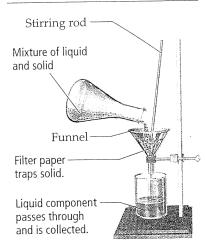
Pure Substances and Mixtures Let a small circle represent an atom of one type of element and a small square represent an atom of a second type of element. Make a drawing of (a) a pure substance (a compound) composed of the two elements (in a one-to-one ratio), (b) a homogeneous mixture composed of the two elements, and (c) a heterogeneous mixture composed of the two elements.

Separating Wixtures

Chemists often want to separate a mixture into its components. Such separations can be easy or difficult, depending on the components in the mixture. In general, mixtures are separable because the different components have different physical or chemical properties. We can use various techniques that exploit these differences to achieve separation. For example, we can separate a mixture of sand and water by **decanting**—carefully pouring off—the water into another container. A homogeneous mixture of liquids can usually be separated by **distillation**, a process in which the mixture is heated to boil off the more **volatile** (easily vaporizable) liquid. The volatile liquid is then recondensed in a condenser and collected in a separate flask (Figure 1.4 \triangleright). If a mixture is composed of an insoluble solid and a liquid, we can separate the two by **filtration**, in which the mixture is poured through filter paper in a funnel (Figure 1.5 \triangleright).

Distillation

Separating Substances by Distillation When a liquid mixture is heated, the component with the lowest boiling point vaporizes first, leaving behind less volatile liquids or dissolved solids. The vapor is then cooled, condensing it back to a liquid, and collected.


1.4 Physical and Chemical Changes and Physical and Chemical Properties

Every day we witness changes in matter: ice melts, iron rusts, gasoline burns, fruit ripens, and water evaporates. What happens to the molecules or atoms that compose these substances during such changes? The answer depends on the type of change. Changes that

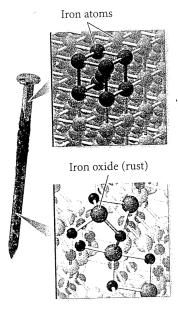
alter only state or appearance, but not composition, are **physical changes**. The atoms or molecules that compose a substance *do not change* their identity during a physical change. For example, when water boils, it changes its state from a liquid to a gas, but the gas remains composed of water molecules, so this is a physical change (Figure 1.6).

Water molecules change from liquid to gaseous state: physical change.

Filtration

Substances by Filtration A solid and liquid mixture can be separated by pouring the mixture through a funnel containing filter paper designed to allow only the liquid to pass.

$H_2O(g)$


 $H_2O(l)$

DE FIGURE 1.6 Boiling, a Physical

Change When water boils, it turns into a gas but does not alter its chemical identity—the water molecules are the same in both the liquid and gaseous states. Boiling is a physical change, and the boiling point of water is a physical property.

A physical change results in a different form of the same substance, while a chemical change results in a completely different substance.

In Chapter 19 we will discuss *nuclear* changes, which can involve atoms of one element changing into atoms of a different element.

A FIGURE 1.7 Rusting, a

Chemical Change When iron rusts, the iron atoms combine with oxygen atoms to form a different chemical substance, the compound iron oxide. Rusting is a chemical change, and the tendency of iron to rust is a chemical property.

Answers to For Practice and For More Practice problems can be found in Appendix IV.

In contrast, changes that alter the composition of matter are **chemical changes**. During a chemical change, atoms rearrange, transforming the original substances into different substances. For example, the rusting of iron is a chemical change. The atoms that compose iron (iron atoms) combine with oxygen molecules from air to form iron oxide, the orange substance we call rust (Figure 1.7 ◄). Figure 1.8 ▶ illustrates other examples of physical and chemical changes.

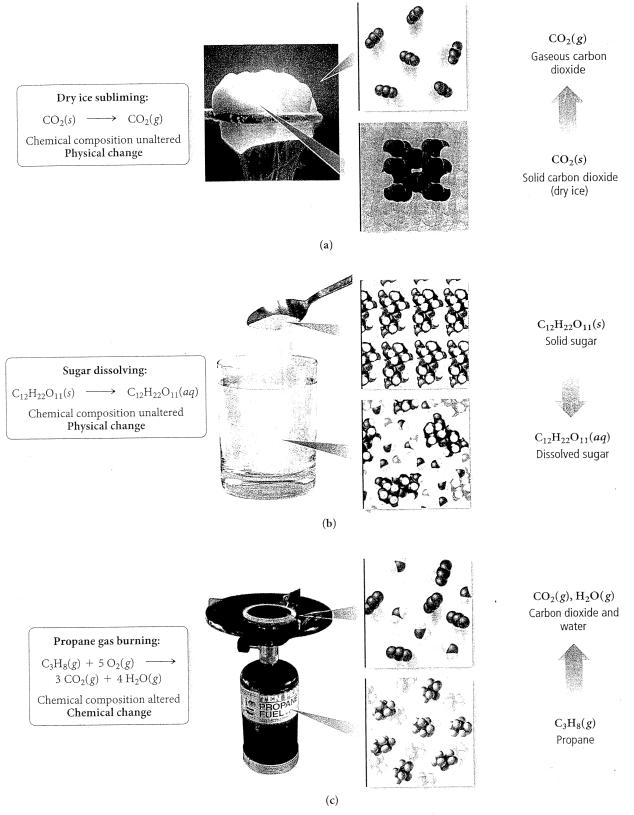
Physical and chemical changes are manifestations of physical and chemical properties. A **physical property** is a property that a substance displays without changing its composition, whereas a **chemical property** is a property that a substance displays only by changing its composition via a chemical change. The smell of gasoline is a physical property—gasoline does not change its composition when it exhibits its odor. The flammability of gasoline, in contrast, is a chemical property—gasoline does change its composition when it burns, turning into completely new substances (primarily carbon dioxide and water). Physical properties include odor, taste, color, appearance, melting point, boiling point, and density. Chemical properties include corrosiveness, flammability, acidity, toxicity, and other such characteristics.

The differences between physical and chemical changes are not always apparent. Only chemical examination can confirm whether a particular change is physical or chemical. In many cases, however, we can identify chemical and physical changes based on what we know about the changes. Changes in the state of matter, such as melting or boiling, or changes in the physical condition of matter, such as those that result from cutting or crushing, are typically physical changes. Changes involving chemical reactions—often evidenced by temperature or color changes—are chemical changes.

Example 1.1 Physical and Chemical Changes and Properties

Determine whether each change is physical or chemical. What kind of property (chemical or physical) is demonstrated in each case?

- (a) the evaporation of rubbing alcohol
- (b) the burning of lamp oil
- (c) the bleaching of hair with hydrogen peroxide
- (d) the formation of frost on a cold night


SOLUTION

- (a) When rubbing alcohol evaporates, it changes from liquid to gas, but it remains alcohol—this is a physical change. The volatility (the ability to evaporate easily) of alcohol is therefore a physical property.
- **(b)** Lamp oil burns because it reacts with oxygen in air to form carbon dioxide and water—this is a chemical change. The flammability of lamp oil is therefore a chemical property.
- (c) Applying hydrogen peroxide to hair changes pigment molecules in hair that give it color—this is a chemical change. The susceptibility of hair to bleaching is therefore a chemical property.
- (d) Frost forms on a cold night because water vapor in air changes its state to form solid ice—this is a physical change. The temperature at which water freezes is therefore a physical property.

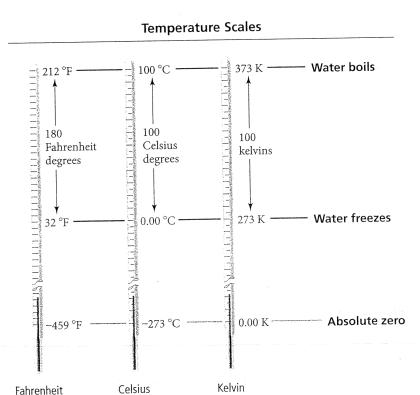
FOR PRACTICE 1.1 Determine whether each change is physical or chemical. What kind of property (chemical or physical) is demonstrated in each case?

- (a) A copper wire is hammered flat.
- (b) A nickel dissolves in acid to form a blue-green solution.
- (c) Dry ice sublimes without melting.
- (d) A match ignites when struck on a flint.

Physical Change versus Chemical Change

 \blacktriangle FIGURE 2.8 Physical and Chemical Changes (a) The sublimation (the state change from a solid to a gas) of dry ice (solid CO_2) is a physical change. (b) The dissolution of sugar is a physical change. (c) The burning of propane is a chemical change.

duration of 9,192,631,770 periods of the radiation emitted from a certain transition in a cesium-133 atom. (We discuss transitions and the emission of radiation by atoms in Chapter 7.) Scientists measure time on a large range of scales. The human heart beats about once every second, the age of the universe is estimated to be about $4.32 \times 10^{17} \, \mathrm{s}$ (13.7 billion years), and some molecular bonds break or form in time periods as short as $1 \times 10^{-15} \, \mathrm{s}$.


The Kelvin: A Measure of Temperature

The **kelvin (K)** is the SI unit of **temperature**. The temperature of a sample of matter is a measure of the average kinetic energy—the energy due to motion—of the atoms or molecules that compose the matter. The molecules in a *hot* glass of water are, on average, moving faster than the molecules in a *cold* glass of water. Temperature is a measure of this molecular motion.

Temperature also determines the direction of thermal energy transfer, what we commonly call *heat*. Thermal energy transfers from hot objects to cold ones. For example, when you touch another person's warm hand (and yours is cold), thermal energy flows *from his or her hand to yours*, making your hand feel warmer. However, if you touch an ice cube, thermal energy flows *out of your hand* to the ice, cooling your hand (and possibly melting some of the ice cube).

Figure 1.11 shows the three common temperature scales. The most common in the United States is the **Fahrenheit** (°F) scale, shown on the left in Figure 1.11. On the Fahrenheit scale, water freezes at 32 °F and boils at 212 °F at sea level. Room temperature is approximately 72 °F. The Fahrenheit scale was originally determined by assigning 0 °F to the freezing point of a concentrated saltwater solution and 96 °F to normal body temperature.

Scientists and citizens of most countries other than the United States typically use the **Celsius** (°C) scale, shown in the middle in Figure 1.11. On this scale, pure water freezes at 0 °C and boils at 100 °C (at sea level). Room temperature is approximately 22 °C. The Fahrenheit scale and the Celsius scale differ both in the size of their respective degrees and the temperature each designates as "zero." Both the Fahrenheit and Celsius scales allow for negative temperatures.

Normal body temperature was later measured more accurately to be 98.6 °F.

of the Fahrenheit, Celsius, and Kelvin Temperature Scales The Fahrenheit degree is five-ninths the size of the Celsius degree and the kelvin. The zero point of the Kelvin scale is absolute zero (the lowest possible temperature), whereas the zero point of the Celsius scale is the freezing point of water.