
The Beefy Catalase

Anirudh Ravichandran, Vanessa Setjodiningrat, Tasha Parekh

Size of Catalase: 250,000 g/mol

Purpose of Project

- Assay to measure the hydrogen peroxide substrate remaining after the action of catalase
- Analyze the activity of the enzyme catalase in different samples
 - Evaluate which tissue samples contain the highest amount of catalase and why
- Observe the stability of catalase over multiple days
 - Determine how the structure allows for stability

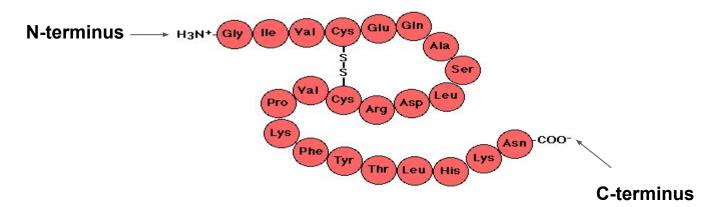
General Catalase Information

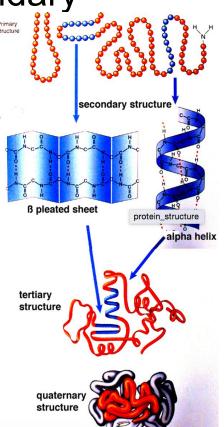
- Produced by aerobic organisms
- Optimal temperatures vary by organisms:
 - Humans: 37° C
 - Yeast: 40° C
 - Archaebacteria: 90° C
- Commonly found in the liver
 - Located in the peroxisome organelle

History of Catalase

- Louis Jacques Thenard discovered that there is some substance that breaks down hydrogen peroxide in the early nineteenth century
- 1900: Catalase discovered as substance that degrades H₂O₂
 - Oscar Loew coined the term "catalase"
 - Discovered that catalase was found in many plants and animals
- 1937: James B. Sumner and Alexander Dounce successfully create catalase from crystallized bovine liver

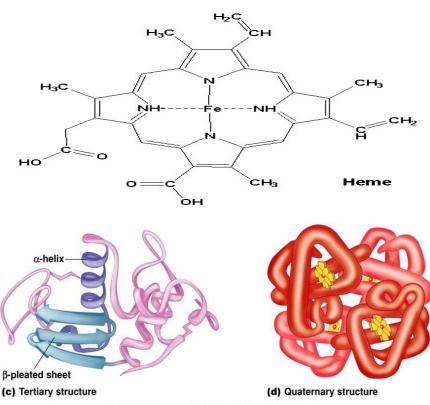
The Role of Catalase

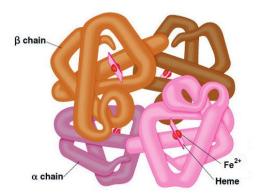

- Protects cell from oxidative damage by hydrogen peroxide (H₂O₂)
- Found in plants and animals
- Facilitates decomposition of H₂O₂ into water (H₂O) and oxygen (O₂)


$$2 H_2O_2 \rightarrow O_2 + 2 H_2O$$

Structure of Catalase: Primary and Secondary

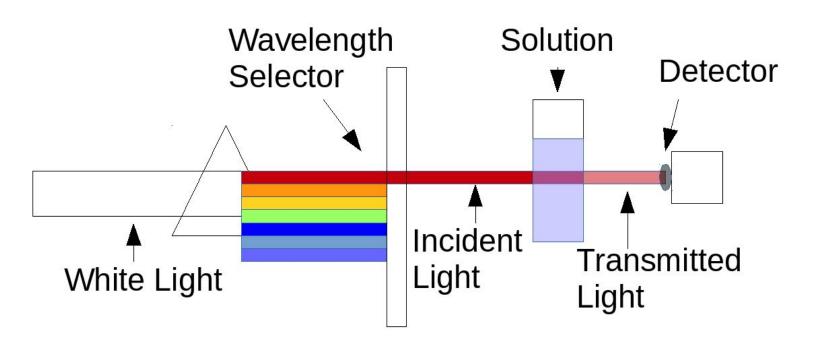
Primary: string of 500 amino acids linked by peptide bonds


Secondary: consists of alpha helixes and beta sheets


Structure of Catalase: Tertiary and Quaternary

- Tertiary: each unit consists of channel with porphyrin heme
 - Porphyrin Ring: water-soluble biological pigment
 - Heme: cofactor consisting of Fe⁺³
 - Porphyrin kelases (grabs) the iron molecule
- Quaternary: linkage between protein structures is highly rigid

How Catalase Works


- H₂O₂ enters the active site
- Turns H₂O₂ into water and oxygen in two steps:
- 1. $H_2O_2 + Fe^{+3}$ enzyme >>>> $H_2O + Fe^{+4}$ enzyme
- 2. $H_2O_2 + Fe^{+4}$ enzyme >>>> $H_2O + Fe^{+3}$ enzyme + O_2

Spectrophotometer

- Method used to measure amount of light absorbed by a chemical substance
- Every chemical compound absorbs, transmits, or reflects light
- Transmittance: Fraction of light that passes through the sample
- Absorbance: Amount of photons (light) that are absorbed

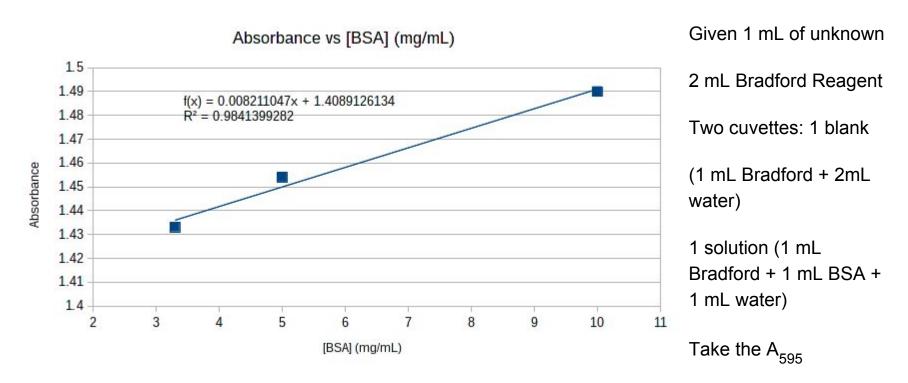
Spectrophotometer

UV-VIS

220-800 nm

Spec 20

400-700 nm


Protein Quantitation of Bovine Serum Albumin (BSA)

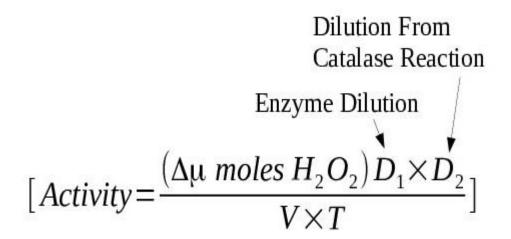
- Set up 5 samples with cuvettes, 1 blank (3 mL dH₂O) and 4 other cuvettes of dilutions.
- 3 mL BSA in cuvette 1, 2 mL in 2, 1.5 mL in 3, and 1 mL in 4.
- Add enough dH₂O so 1,2,3, and 4 are a total volume of 3 mL.
- Add 3 mL Bradford Reagent to each tube, and wait for 5 minutes.
- Blank spec 20 at A₅₉₅ take A₅₉₅ of cuvettes 1-4.

Given Data:

A ₅₉₅	[BSA] mg/mL
1.49	10
1.503	6.7
1.454	5
1.433	3.3

Finding unknown concentration of BSA

Extract Preparation

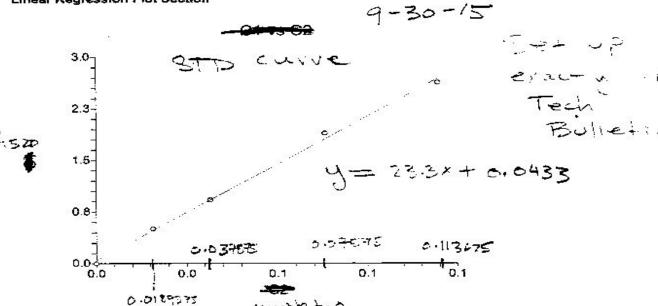

- Centrifuge (1)
- Chilled or frozen tissue (enough for 1-2g)
- Small beaker (1)
- Chilled mortar and pestle (1)
- PB (10 mL)
- Plastic tubes (4)
- Plastic pipet (2)
- Glass cuvette (1)
- Parafilm (1 strip)

- 1. Measure 1-2 grams of respective tissue
- 2. Place tissue in chilled mortar and pestle
- 3. Measure 10 mL of PB and pour into mortar
- 4. Smash and mix tissue with PB until a consistent, smooth liquid forms
- 5. Pipet 1.5 mL of liquid into plastic tube; Repeat for other three tubes
- 6. Centrifuge mixture for 10 minutes
- 7. Use a new pipet supernatant from each tube into glass cuvette
- Parafilm and store in refrigerator overnight

How the Assay works

- 1. Prepare three dilutions for both the catalase and crude extract
- 2. Prepare three Blanks, two reaction tubes and five Stops
- 3. Transfer 6 λ of the third dilution of both catalase and crude extract into Blank
- 4. Wait four minutes for catalase to react
- Transfer 100 λ of each Blank into the Stops
- Set up 6 cuvettes with 1 mL color reagent (one Blank with Color Reagent + five stops)
- 7. Transfer 100 λ of stops into the cuvettes, wait 15 minutes. Check A₅₂₀

Calculating Catalase and Protein Activity



Linear Regression Report

Page/Date/Time 1 9/30/2015 8:17:25 AM Database

Linear Regression Plot Section

Y = C1 X = C2

Calculation Walkthrough

Given this set of data (Absorbances):

 H_2O_2 : .71019/.0436 = 16.28 mg/mL

Blank 1: .88464

Bradford: .6618

Blank 2: .85779

Blank 3: .8492

Crude Extract: .86285

Purified Catalase: .87840

Calculation Walkthrough (cont.)

Change in micromole H₂O₂:

Blank 1: .88464 / 23.3 = .037967

Blank 2: .85779 (ignored)

Blank 3: .8492 (ignored)

Crude Extract: .86285 / 23.3 = .037032

Purified Catalase: .87840 / 23.3 = .0377

 H_2O_2 : .71019/.0436 = 16.28 mg/mL

Bradford: .6618

Calculation Walkthrough (cont.)

Catalase:
$$\frac{(.037967 - .0377)(10,000)(100)}{.3(4)} \approx 223.176 \frac{\mu \text{mole H}_2\text{O}_2}{\text{mL min}}$$

$$\frac{.6618 \approx .0076 \, x + .5217}{.223.176} \approx 101.444 \frac{\mu \text{mole H}_2\text{O}_2}{\text{mL min mg}}$$

$$\frac{.779.167}{18.4342} \approx 42.276 \frac{\mu \text{mole H}_2\text{O}_2}{\text{mL min mg}}$$

 $101.136/42.276 \approx 2.4$

Crude Extract : $\frac{(.037967 - .037032)(10,000)(100)}{.3(4)} \approx 779.328 \frac{\mu \text{mole H}_2\text{O}_2}{\text{mL min}}$

Tissue Data

Tissue	Volume (mL)	Total Protein (mg)	Activity (units)	Total Activity (units * ml)	Specific Activity (units / mg)	Total Activity /	Total Activity Per Wet Mass of Tissue
Chicken Liver	4.00	8.22	3080.59	12322.37	374.89	1499.54	10853.53
	4.00	0.22	3000.33	12322.31	374.09	1499.54	10000.00
Beef Liver*	4.00	16.39	3048.64	12194.56	185.98	743.93	8486.12
Avocado*	4.00	15.54	2524.86	10099.42	162.43	649.72	5919.94
Potato*	4.00	5.92	1531.66	6126.62	258.86	1035.46	4816.53
Beef Heart*	4.00	5.69	378.04	1512.16	66.46	265.86	1213.61

Bradford Equation: y = .101x + .4122

*Only had two trials

Beef Liver Extended Lifetime

Tissue	Volume (mL)	Total Protein (mg)	Activity (units)	Total Activity (units * ml)	Specific Activity (units / mg)	Total Activity / Total Protein	Activity Per Wet Mass of Tissue	H2O2 mg/mL
Beef Liver Day	4	7.49	899.50	3598.00	120.17	480.66	477.79	15.05
Beef Liver Day	4	7.49	2320.46	9281.84	309.99	1239.97	1232.57	14.80
Beef Liver Day	4	7.49	2244.64	8978.56	299.86	1199.453151	1192.30	14.58

How is an extended lifetime possible?

- Catalase activity increases as temperature gets lower
- Low temperatures and high concentrations of H₂O₂ have low catalase activity (when low temp wouldn't favor)
- 3. At a specified temperature, catalase activity decreases as H₂O₂ concentration increases

TABLE I.
Relative Catalase Activity.

Temperature.	H ₂ O ₂ concentration.					
Temperature.	0.36 N	0.54 N	0.72 N	0.90 N	1.08 N	
°C.						
0	55.5	76.0	40.5	29.8	13.0	
8		100.0	88.2	61.4	62.8	
19.4	68.2	73.5	66.6	57.7	49.5	
30	46.5	48.0	44.7	42.7	38.5	
	0.36 N	0.72 N	1.08 N	1.44 N	1.80 N	
3	100.0	82.6			49.0	
11.5	95.5	70.9	53.0			
15.8	90.7		49.1	50.4	37.3	
19.8	73.4	55.6	49.5	42.6	33.9	
24.5	56.9	49.6	42.6	39.6	32.6	
	0.37 N	0.55 N	0.74 N			
0		41.7	21.4			
10	100.0	82.5	56.0			
16.1	96.2	75.0	59.5			
20.2	71.5	60.5	52.4			
24.7	59.8	53.9	49.5			
29.5	49.0	44.5	41.2			
	0.22 N	0.36 N	0.50 N			
15.1		97.0	100.0			
20		78.0	70.0			
25.4	57.9	58.6	59.0			
30	48.2	44.8	44.8			

Conclusions

- Catalase stays stable over a long period of time as long as temperature stays at optimal low temperature
- What went wrong:
 - Pipetting
 - Maintaining a consistent H₂O₂ values across multiple days for a single tissue sample
 - The results would differ because of the variant H_2O_2 .

References

http://chemwiki.ucdavis.edu/Physical Chemistry/Kinetics/Reaction Rates/Experimental Determination of Kinetcs/Spectrophotometry

http://www.sigmaaldrich.com/life-science/proteomics/protein-guantitation/bradford-reagent.html

http://www.sigmaaldrich.com/catalog/product/sigma/c1345?lang=en®ion=US

http://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-assay-of-catalase.html

http://www.britannica.com/science/porphyrin

http://www.worthington-biochem.com/ctl/default.html

http://www.saylor.org/site/wp-content/uploads/2012/12/CHEM203_Wikipedia_Catalase_12.20.12.pdf

http://www.ebi.ac.uk/interpro/potm/2004_9/Page2.htm

http://factfile.org/10-facts-about-catalase

http://www.jbc.org/content/68/3/521.full.pdf

 $\underline{http://www.ift.org/\sim/media/Knowledge\%20Center/Learn\%20Food\%20Science/Enzymes\%20in\%20Food\%20Systems/TeacherGuideCATALASE.pd}$

Acknowledgements

- BASIS for providing the facilities
- The one and only Dr. Pete... who made us get our ducks in a row
- Ms. Terrell

Thank you! Any questions?